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ABSTRACT
Over the last 10–15 years, our understanding of the
composition and functions of the human gut microbiota
has increased exponentially. To a large extent, this has
been due to new ‘omic’ technologies that have
facilitated large-scale analysis of the genetic and
metabolic profile of this microbial community, revealing
it to be comparable in influence to a new organ in the
body and offering the possibility of a new route for
therapeutic intervention. Moreover, it might be more
accurate to think of it like an immune system: a
collection of cells that work in unison with the host and
that can promote health but sometimes initiate disease.
This review gives an update on the current knowledge in
the area of gut disorders, in particular metabolic
syndrome and obesity-related disease, liver disease, IBD
and colorectal cancer. The potential of manipulating the
gut microbiota in these disorders is assessed, with an
examination of the latest and most relevant evidence
relating to antibiotics, probiotics, prebiotics, polyphenols
and faecal microbiota transplantation.

INTRODUCTION
Imagine the scenario: a scientist at a conference
claims to have found a new organ in the human
body. It is comparable to the immune system in as
much as it is made up of a collection of cells, it
contains a 100 times more genes than the host, is
host-specific, contains heritable components, can be
modified by diet, surgery or antibiotics, and in its
absence nearly all aspects of host physiology are
affected. While this may seem far-fetched, it is the
current situation in which we find ourselves. We
now realise that the human microbiota is an over-
looked system that makes a significant contribution
to human biology and development. Moreover,
there is good evidence that humans co-evolved a
requirement for their microbiota.1

In the past decade, partly because of high reso-
lution observational studies using next-generation
sequencing technologies and metabolite profiling
(see box 1), the gut microbiota has become asso-
ciated with promotion of health and the initiation
or maintenance of different GI and non-GI dis-
eases. As we enter the postmetagenomic era, we
need to move away from simple observations to
determine what are merely correlations and what
are causal links—and focus efforts and resources on
the latter. This postmetagenomic era is starting to
provide new therapeutic targets based on a better
understanding of how the microbiota interacts with
the host’s physiology. Ultimately, we aim to

integrate an individual’s microbiota into some form
of personalised healthcare and, by better under-
standing its role, treat an individual’s diseases more
efficiently and in a more targeted fashion. With a
more complete understanding of the disease
process, we will be able to more accurately stratify
different disease states and determine whether or
not the gut microbiota is a potential therapeutic
target which we can modulate in order to treat spe-
cific diseases.
This review gives a much needed update on

current understanding of the gut microbiota in GI
diseases and metabolic disorders, and gives an
insight into how this might impact on clinical prac-
tice. The evidence for the preventive and thera-
peutic benefit of different ways of modulating the
gut microbiota, such as probiotics, prebiotics, anti-
biotics and faecal microbiota transplantation (FMT)
(see box 2), is reviewed.

CURRENT UNDERSTANDING OF THE GUT
MICROBIOTA
In the last decade, several large-scale projects, for
example, the human microbiome project, have
investigated the microbiota of a variety of bodily
niches, including the skin as well as the oral, vaginal
and nasal cavities.2 While some of these are rela-
tively easy to access, the GI tract remains a challen-
ging environment to sample, and to describe.
Currently the majority of research is focused on the
gut microbiota, since this is where the greatest
density and numbers of bacteria are found, with
most data being derived from faecal samples and, to
a lesser extent, mucosal biopsies. While it is rela-
tively easy to obtain fresh faecal samples, the infor-
mation obtained from them does not represent the
complete picture within the gut. From a number of
limited studies, we know that the small intestine
contains a very different abundance and compos-
ition of bacteria, with much more dynamic variation
compared with the colon.3 The colonic microbiota
is largely driven by the efficient degradation of
complex indigestible carbohydrates but that of the
small intestine is shaped by its capacity for the fast
import and conversion of relatively small carbohy-
drates, and rapid adaptation to overall nutrient
availability. While faeces are not an ideal proxy for
the GI tract, they do give a snapshot of the diversity
within the large intestine. Furthermore, the majority
of the data comes from North American and
European studies with very few studies in Asia,
Africa or South America. Hence we have a some-
what biased view of the gut microbiota.
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This rapid increase in interest in the microbiome has also
been driven by the application of multi-‘omic’ technologies; we
refer the reader to Lepage et al4 for more detailed explanation
of these (see also box 1).

What do we know about the gut microbiota?
Bearing in mind the limitations above, the GI tract is often seen
as a two phylum system (the Firmicutes and Bacteroidetes)
although it should be noted that members of at least 10 differ-
ent phyla can also have important functional contributions (see
box 3). We are also very bacteria-centric when we look at the
gut microbiota; only a handful of papers have looked at the
viral component (or virome) and micro-eukaryotes (protozoa
and fungi). When the gut microbiota of relatively large cohorts
of individuals (eg, more than 100) is analysed, it can be seen

that the ratio of the Firmicutes:Bacteroidetes is not the same in
all individuals. Currently we do not know the significance of
being at either end of this continuum, especially as a large shift
in the relative abundance of a group of organisms translates to a
modest change in bacterial numbers. Yet there is evidence that
depletion of a single species, for example, Faecalibacterium
prausnitzii, belonging to the Firmicutes phylum, has been asso-
ciated with IBD.5 But in the scientific literature, we see counter-
arguments for any involvement of this species in IBD.6 This
disparity highlights the current status of understanding. We

Box 2 Potential therapies aimed at modulation of the
gut microbiota

Probiotics: Live microorganisms that, when administered in
adequate amounts, confer a health benefit on the host.107 108

Examples include strains of the genera Bifidobacterium and
Lactobacillus. Probiotics can have multiple interactions with the
host,109 including competitive inhibition of other microbes,
effects on mucosal barrier function and interaction with antigen
presenting dendritic cells.72

Prebiotics: A selectively fermented ingredient that results in
specific changes in the composition and/or activity of the GI
microbiota, thus conferring benefit(s) upon host health.110

Prebiotics are usually non-digestible carbohydrates,
oligosaccharides or short polysaccharides, with inulin,
oligofructose, galactofructose, galacto-oligosaccharides and
xylo-oligosaccharides being some of the most intensively
studied.
Faecal microbiota transplantation: The introduction of gut
bacteria from a healthy donor into a patient, through transfer of
an infusion of a faecal sample via nasogastric tube,
nasoduodenal tube, rectal enema or the biopsy channel of a
colonoscope.111

Box 1 A short primer of microbiology (see also Lepage
et al)4

Dysbiosis
A disturbance or imbalance in a biological system, for example,
changes in the types and numbers of bacteria in the gut which
may lead to developing different diseases, such as IBD.
Inflammasomes
Recently discovered multiprotein complexes that are involved in
a wide range of inflammatory processes including programmed
cell death (pyroptosis), in response to the recognition of
microbial and danger signals.
Lipopolysaccharide (LPS)
A major component of the outer membrane of Gram-negative
bacteria; an endotoxin. Now implicated as a driver of
inflammation and associated with onset of certain diseases.
Lipoteichoic acid
A major component of the outer membrane of Gram-positive
bacteria; an endotoxin. Now implicated as a driver of
inflammation and associated with onset of certain diseases.
Metabonome/metabolome
A profile of the chemicals in a tissue or sample, for example the
urine metabonome. This profile represents a snapshot in time of
what chemicals are present in the sample.
Metagenomics
A method which allows us to create catalogues of what the
bacteria can do based on the genes that they have.
Microbiome
A collection of different microbes and their functions or genes
found in an environmental habitat. Different parts of the body
have different microbiomes, for example, the skin microbiome is
different to the gut microbiome, but they are all part of the
human microbiome.
Microbiota
The types of organisms that are present in an environmental
habitat, whether they are bacteria, viruses or eukaryotes.
‘Omic’ methods
A term which describes a set of methods, such as genomics,
metabonomics, metagenomics, etc, which we use to explore the
interactions between the bacteria in the gut and the host.
Pathobiont
A commensal organism that can cause disease when specific
genetic or environmental conditions are altered in the host.
Phenome
A collection of measurable features that define an individual.

Box 3 A primer in taxonomics

In order to classify bacteria we have adopted the Linnaean
system, which comprises hierarchies into which an organism is
placed.
For example humans are classified at the species level as Homo
sapiens, which are members of the genus Homo, family
Hominidae, order Primates, class Mammalia, phylum Chordata
and finally kingdom Eukaryota. As one moves up through the
different taxonomic levels, from species to kingdom, greater
numbers of organisms become associated with each other.
In life there are three kingdoms, the Bacteria, Archaea and
Eukaryota, with the majority of bacterial-like (or prokaryotes)
being classified within the Bacteria and Archaea. For example
the gut commensal and sometime pathogenic species
Escherichia coli is found in the kingdom Bacteria; phylum
Proteobacteria; class Gammaproteobacteria; order
Enterobacteriales; family Enterobacteriaceae and finally genus
Escherichia. Thus when we refer to phyla or a phylum, we are
usually describing very large collections of related organisms.
In the large intestine of healthy adults the two most dominant
phyla are the Firmicutes (comprised mainly of Gram-positive
clostridia) and Bacteroidetes (comprised mainly of
Gram-negative bacteria such as the species Bacteroides fragilis).
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know that the gut microbiota is essential to the proper function
and development of the host but we are unsure which are key-
stone species and whether the microbiota’s function is more
important than any individual member of the community. But
this is too simplistic a view. In several cases, strain differences
within a species can be the difference between being a patho-
gen/pathobiont and being a probiotic: for example, Escherichia
coli is associated with IBD and colorectal cancer (CRC)7 8 yet
an E. coli strain is used as a probiotic.

In fact, five phyla represent the majority of bacteria that com-
prise the gut microbiota. There are approximately 160 species in
the large intestine of any individual9 and very few of these are
shared between unrelated individuals. In contrast, the functions
contributed by these species appear to be found in everybody’s
GI tract, an observation that leads us to conclude that function
is more important than the identity of the species providing it.
Yet differences in the gut microbiota may matter because these
may result in differences in the effectiveness of a function. For
example, while the ability to synthesise short chain fatty acids
(SCFAs) is found in all humans,10 their amounts can vary.

DIETARY MODULATION OF THE GUT MICROBIOTA
Metabolic activities of the gut microbiota
Carbohydrate fermentation is a core activity of the human gut
microbiota, driving the energy and carbon economy of the
colon. Dominant and prevalent species of gut bacteria, including
SCFA-producers, appear to play a critical role in initial degrad-
ation of complex plant-derived polysaccharides,11 collaborating
with species specialised in oligosaccharide fermentation (eg, bifi-
dobacteria), to liberate SCFAs and gases which are also used
as carbon and energy sources by other more specialised bacteria
(eg, reductive acetogens, sulfate-reducing bacteria and methano-
gens).12 Efficient conversion of complex indigestible dietary
carbohydrates into SCFA serves microbial cross-feeding commu-
nities and the host, with 10% of our daily energy requirements
coming from colonic fermentation. Butyrate and propionate can
regulate intestinal physiology and immune function, while
acetate acts as a substrate for lipogenesis and gluconeogenesis.13

Recently, key roles for these metabolites have been identified in
regulating immune function in the periphery, directing appropri-
ate immune response, oral tolerance and resolution of inflamma-
tion, and also for regulating the inflammatory output of adipose
tissue, a major inflammatory organ in obesity.14 In the colon,
the majority of this carbohydrate fermentation occurs in the
proximal colon, at least for people following a Western style
diet. As carbohydrate becomes depleted as digesta moves
distally, the gut microbiota switches to other substrates, notably
protein or amino acids. Fermentation of amino acids, besides
liberating beneficial SCFAs, produces a range of potentially
harmful compounds. Some of these may play a role in gut dis-
eases such as colon cancer or IBD. Studies in animal models and
in vitro show that compounds like ammonia, phenols, p-cresol,
certain amines and hydrogen sulfide, play important roles in the
initiation or progression of a leaky gut, inflammation, DNA
damage and cancer progression.15 On the contrary, dietary fibre
or intake of plant-based foods appears to inhibit this, highlight-
ing the importance of maintaining gut microbiome carbohydrate
fermentation.16 Recognition of carbohydrate fermentation as a
core activity of the gut microbiota provides the scientific basis
for rational design of functional foods aimed at improving gut
health and also for impacting on microbiota activities linked to
systemic host physiology through newly recognised interking-
dom axes of communication such as the gut:liver axis, the gut:
brain axis and the gut:brain:skin axis.17

Three ‘P’s’ for gut health: probiotics, prebiotics
and polyphenols
A number of dietary strategies are available for modulating
either the composition or metabolic/immunological activity of
the human gut microbiota: probiotics, prebiotics and polyphe-
nols are among the most well established.18

There are many examples of positive results with different
probiotic strains against a range of disease states in animal
models, however the human data are equivocal. This may partly
be due to poor study design and poor choice of strain.
However, there is also a persistent lack of understanding as to
the very nature of probiotics, which cannot be considered a
‘class’ of bioactives, amenable to traditional efficacy assessments
such as the meta-analysis (unless restricted to one strain), since
they are all unique living organisms and their health-promoting
traits are strain-specific. Rarely have probiotic strains been
selected with specific mechanisms of effect in mind; this has
led to conflicting observations and damaged the reputation of
this area of science. A few exceptions do exist, most notably
the work of Jones et al who selected a bile salt-hydrolysing
Lactobacillus reuteri strain, to study its ability to reduce choles-
terol levels in hypercholesterolaemic individuals. In two well
powered, randomised, placebo-controlled and double-blinded
studies, they demonstrated that ingestion of this strain signifi-
cantly lowered total and low density lipoprotein
(LDL)-cholesterol. Moreover, they suggested an underlying
novel mechanism linked to reduced fat absorption from the
intestine19 via the nuclear receptor farnesoid X receptor
(FXR).20

Prebiotics represent a specific type of dietary fibre that when
fermented, mediate measurable changes within the gut micro-
biota composition, usually an increase in the relative abundance
of bacteria thought of as beneficial, such as bifidobacteria or
certain butyrate producers. As with probiotics, despite convin-
cing and reproducible results from animal studies showing effi-
cacy in prevention or treatment of many diseases (eg, IBD, IBS,
colon cancer, obesity, type 2 diabetes (T2D) and cardiovascular
disease), the data in humans remain ambiguous. Fewer well
powered or well designed clinical studies have been conducted
with prebiotics compared with probiotics, and there may be an
issue with prebiotic dose. Human studies rarely, if ever, employ
prebiotics. A prebiotic is shown to be efficacious in animal
studies: typically 10% w/w of the diet, which in humans equates
to about 50 g per day.18 However, as we learn more about the
ecology of the gut microbiota, it is becoming clear that the pre-
biotic concept has tapped into the underlying fabric of the gut
microbiota as a primarily saccharolytic and fermentative microbes
community evolved to work in partnership with its host’s digest-
ive system to derive energy and carbon from complex plant poly-
saccharides which would otherwise be lost in faeces.

Polyphenols are a diverse class of plant secondary metabolites,
often associated with the colour, taste and defence mechanisms
of fruit and vegetables. They have long been studied as the most
likely class of compounds present in whole plant foods capable
of affecting physiological processes that protect against chronic
diet-associated diseases. The gut microbiota plays a critical role
in transforming dietary polyphenols into absorbable biologically
active species, acting on the estimated 95% of dietary polyphe-
nols which reach the colon.21 Recent studies show that dietary
intervention with polyphenol extracts, most notably dealcoho-
lised red wine polyphenol extract and cocoa-derived flavanols,
modulate the human gut microbiota towards a more ‘health-
promoting profile’ by increasing the relative abundance of bifi-
dobacteria and lactobacilli. These data again raise the possibility
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that certain functional foods tap into the underlying ecological
processes regulating gut microbiome community structure and
function, contributing to the health of the gut microbiota and
its host.22

OBESITY-RELATED DISEASES AND THE GUT MICROBIOTA
Starting around 2004, the hallmark studies of Gordon et al
demonstrated a potential relationship between the gut micro-
biome and development of an obese phenotype. An increase in
relative abundance of Firmicutes and a proportional decrease in
Bacteroidetes were associated with the microbiota of obese
mice,23 which was confirmed in a human dietary intervention
study demonstrating that weight loss of obese individuals (body
mass index, BMI>30) was accompanied by an increase in the
relative abundance of Bacteroidetes.24 Nevertheless, based on
most human studies, the obesity-associated decrease in the ratio
of Bacteroidetes to Firmicutes (B:F) remains controversial.24 25

This is likely due to heterogeneity among human subjects with
respect to genotype and lifestyle. Recent studies have identified
diet, especially fat, as a strong modulator of the microbiota, par-
ticularly in inbred and age-standardised laboratory animals. The
sources of variation in the microbiota are mainly limited to the
experimental diets used, and there is growing evidence that the
high fat intake rather than obesity per se had a direct effect on
the microbiota and linked clinical parameters.26 However, in
humans the microbiome is exposed to fundamentally different
‘environmental’ factors in obese and lean individuals that go
beyond BMI alone, including diet26 and host hormonal
factors.27 In addition, the aetiology of obesity and its metabolic
complications, including low grade inflammation, hyperlipid-
aemia, hypertension, glucose intolerance and diabetes, reflect
the complex interactions of these multiple genetic, behavioural
and environmental factors.28 Lastly, the accuracy of BMI as an
indicator for obesity is limited; 25% of obese people could in
fact be regarded as metabolically ‘healthy’ (ie, with normal lipid
and glucose metabolism).29 Therefore, linking GI tract microbial
composition directly and exclusively to obesity in humans will
remain challenging due to the various confounding factors
within the heterogeneous population.

This complexity has led to a shift from treating obesity as a
single phenotype, to attempts at correlating microbial signatures
to distinct or multiple features associated with (the development
of) metabolic syndromes such as T2D. Recently, two (meta)
genome-wide association studies were performed, with 345
Chinese individuals30 and 145 European women.31 In both
studies, de novo generated metagenomic species-level gene clus-
ters were employed as discriminant markers which, via mathem-
atical modelling, could better differentiate between patients and
controls with higher specificity than a similar analysis based on
either human genome variation or other known risk factors
such as BMI and waist circumference. At the functional level,
membrane transporters and genes related to oxidative stress
were enriched in the microbiota of patients,31 while butyrate
biosynthesis was decreased.30 Although both studies observed
high similarities in microbial gene-encoded functions, the most
discriminant metagenomic species-level gene clusters differed
between the cohorts (Akkermansia did not contribute to the
classification in the European cohort whereas Lactobacillus
showed no contribution in the Chinese study population), indi-
cating that diagnostic biomarkers could be specific to the popu-
lation studied.

In another metagenomic study, a bimodal distribution of
microbial gene richness in obese individuals was observed, strati-
fying individuals as High Gene Count or Low Gene Count

(HGC and LGC).32 HGC individuals were characterised by
higher prevalence of presumed anti-inflammatory species such
as F. prausnitzii, and an increased production potential of
organic acids (including butyrate). In contrast, LGC individuals
showed higher relative abundance of potentially proinflamma-
tory Bacteroides spp and genes involved in oxidative stress
response. Remarkably, only biochemical obesity-associated vari-
ables, such as insulin resistance, significantly correlated with
gene count while weight and BMI did not, underscoring the
inadequacy of BMI as an indicator for ‘Obesity and its
Associated Metabolic Disorders’ (OAMD).33 An accompanying
paper demonstrated that a diet-induced weight-loss intervention
significantly increased gene richness in the LGC individuals
which was associated with improved metabolic status.34

Although gene richness was not fully restored, these findings
support the reported link between long-term dietary habits and
the structure of the gut microbiota.31 It also suggests permanent
adjustment of the microbiota may be achieved through diet.

Most studies involving the microbiome have been solely cor-
relative but recently a causal relationship was established
between host glucose homoeostasis and gut microbial compos-
ition. FMT from lean donors to individuals with metabolic syn-
drome significantly increased their insulin sensitivity.33 The
transplant produced an increase in faecal butyrate concentra-
tions, microbial diversity and the relative abundance of bacteria
related to the butyrate-producing Roseburia intestinalis.

Together, these studies produce a body of evidence that the
microbiome plays a role in host energy homoeostasis and the
establishment and development of OAMD, although the exact
mechanisms remain obscure. Previous contradictory findings
might be attributed to miscellaneous approaches,35 and also het-
erogeneity in genotype, lifestyle and diet of humans combined
with the complex aetiology of OAMD. Nonetheless, a clearer
picture is emerging. The gut of individuals with OAMD is
believed to harbour an inflammation-associated microbiome,
with a lower potential for butyrate production and reduced bac-
terial diversity and/or gene richness. Although the main cause of
OAMD is excess caloric intake compared with expenditure, dif-
ferences in gut microbial ecology might be an important medi-
ator and a new therapeutic target or a biomarker to predict
metabolic dysfunction/obesity in later life.

LIVER DISEASE AND THE GUT MICROBIOTA
The liver receives 70% of its blood supply from the intestine via
the portal vein, thus it is continually exposed to gut-derived
factors including bacterial components, endotoxins (lipopolysac-
charide, flagellin and lipoteichoic acid) and peptidoglycans.
Multiple hepatic cells, including Kupffer cells, sinusoidal cells,
biliary epithelial cells and hepatocytes, express innate immune
receptors known as pathogen-recognition-receptors that respond
to the constant influx of these microbial-derived products from
the gut.36 It is now recognised that the gut microbiota and
chronic liver diseases are closely linked. Characterising the
nature of gut dysbiosis, the integrity of the gut barrier and
mechanisms of hepatic immune response to gut-derived factors
is potentially relevant to development of new therapies to treat
chronic liver diseases.37 Furthermore the field of bile acid signal-
ling has thrown open the concept of the gut:liver axis as being
active and highly regulated.38

Non-alcoholic fatty liver disease
The pathophysiology of NAFLD is multifactorial with strong
genetic and environmental contributions. Recent evidence
demonstrates that gut microbiota dysbiosis can result in the
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development of obesity-related non-alcoholic fatty liver disease
(NAFLD), and patients with NAFLD have small intestinal bac-
terial overgrowth and increased intestinal permeability.39 In the
1980s, development of non-alcoholic steatohepatitis (NASH)
and small intestinal bacterial overgrowth was observed in
humans after intestinal bypass and, interestingly, regression of
hepatic steatosis after metronidazole treatment, suggesting a pos-
sible role for the gut bacteria in NAFLD.40 Disruption of the
murine inflammasomes (see box 1) is associated with an increase
in Bacteroidetes and reduction in Firmicutes and results in
severe hepatic steatosis and inflammation.41 Faecal microbiota
analysis of patients with NAFLD and NASH has produced vari-
able results due to significant variation of patient demographics,
severity of liver disease and methodology. A lower proportion
of Ruminococcaceae was noted in patients with NASH com-
pared with healthy subjects42 and a study which characterised
gut microbiota of children with NASH, obesity and healthy con-
trols showed that patients with NASH had a higher proportion
of Escherichia compared with other groups.43 Patients with
NAFLD also have increased gut permeability suggesting that
translocation of bacteria or microbe derived products into the
portal circulation contributes to the pathogenesis.39

Alcoholic liver disease
Since not all alcoholics develop liver injury, it appears that
chronic alcohol abuse is necessary but not sufficient to cause
liver dysfunction. Numerous animal model and human observa-
tional studies indicate that gut bacterial products like endotoxin
may mediate inflammation and function as cofactors for the
development of alcohol-related liver injury.44 Serum endotoxin
levels are elevated in humans and rats with alcoholic liver
disease, and monocytes from alcoholics are primed to produce
cytokines after endotoxin exposure. Alcohol causes intestinal
bacterial overgrowth in humans and bacterial numbers were sig-
nificantly higher in jejunal aspirates from patients with chronic
alcohol abuse compared with controls, with similar findings in
patients with alcohol-induced cirrhosis.45 The degree of over-
growth correlates with the severity of cirrhosis.
Tsukamoto-French model mice fed intragastrically with alcohol
for 3 weeks showed increased relative abundance of
Bacteroidetes and Akkermansia spp and a reduction in
Lactobacillus, Leuconostoc, Lactococcus and Pediococcus while
control mice showed a relative predominance of Firmicutes.46

Patients with alcoholic liver disease also show increased gut per-
meability, allowing translocation of bacteria and bacterial pro-
ducts to the liver.47

Autoimmune liver diseases
These consist of primary sclerosing cholangitis (PSC), primary
biliary cirrhosis (PBC) and autoimmune hepatitis and represent
at least 5% of all chronic liver diseases. They are presumed
autoimmune conditions but the expectation is that the gut
microbiota is relevant to pathogenesis, particularly because (A)
PSC is associated with IBD and aberrant lymphocyte tracking,
and (B) significant gut:liver axes exist through bile acid signal-
ling. Patients with PSC develop a distinct form of IBD thus
understanding the relationship between PSC and IBD is essential
in uncovering the pathogenesis of PSC, which remains largely
undetermined. However, it is likely that in genetically suscep-
tible individuals, intestinal bacteria could trigger an abnormal or
inadequate immune response that eventually leads to liver
damage and fibrosis. Recently it was shown that patients with
PSC have distinct gut microbiota. Analysis of colon biopsy
microbiota revealed that patients with PSC-IBD and IBD

showed reduced abundance of Prevotella and Roseburia (a
butyrate-producer) compared with controls.48 49 Patients with
PSC-IBD had a near-absence of Bacteroides compared with
patients with IBD and control patients, and significant increases
in Escherichia, Lachnospiraceae and Megasphaera. Randomised
controllled trials (RCTs) investigating antibiotic therapy in PSC
have shown these to be superior in improving biochemical sur-
rogate markers and histological parameters of disease activity
compared with ursodeoxycholic acid alone.50 In a recent pro-
spective paediatric case series, oral vancomycin was shown to
normalise or significantly improve liver function tests.51 There
is evidence that mucosal integrity is compromised in patients
with PSC, supporting the traditional leaky gut hypothesis of
microbe-derived products translocating to the liver and biliary
system to trigger an inflammatory reaction.52 It was also demon-
strated that tight junctions of hepatocytes were impaired in
patients with PSC and infusion of non-pathogenic E. coli into
portal circulation caused portal fibrosis in animal models.53

These findings collectively suggest that bacterial antigens translo-
cate across a leaky and possibly inflamed gut wall into the portal
and biliary system to induce an abnormal immune response and
contribute to PSC pathogenesis.

PBC is a chronic cholestatic liver disease with an uncertain
aetiology. It is generally believed to be an autoimmune disease
triggered by environmental factors in individuals with genetic
susceptibility. As yet, there have been no studies directly charac-
terising the gut microbiota in patients but molecular mimicry
has been suggested as a proposed mechanism for the develop-
ment of autoimmunity in PBC, with serum antibodies of
patients cross-reacting with conserved bacterial pyruvate
dehydrogenase complex component E2 (PDC-E2) homologues
of E. coli, Novosphingobium aromaticivorans, Mycobacterium
and Lactobacillus species. Hence it has been speculated that
these bacteria (of possible GI origin) may initiate molecular
mimicry and development of PBC in genetically susceptible
hosts.54

Modulation of the microbiota as a therapy in liver disease
Probiotics have shown promise in ameliorating liver injury by
reducing bacterial translocation and hepatic inflammation.55

A recent meta-analysis concluded that probiotics can reduce
liver aminotransferases, total cholesterol, tumour necrosis factor
α and improve insulin resistance in patients with NAFLD.56

A recent study in patients with cirrhosis with ascites showed
that the probiotic VSL#3 significantly reduced portal hyperten-
sion.57 A further study evaluated the role of FMT in modulating
liver disease by transferring the NAFLD phenotype from mice
with liver steatosis to germ-free mice.58 There remains a need
for detailed descriptive and interventional studies focused on
bacterial diversity and mechanisms linking gut dysbiosis with
inflammatory, metabolic and autoimmune/biliary liver injury.

IBD AND THE GUT MICROBIOTA
Early studies implicating bacteria in IBD pathogenesis focused
on identifying a potential culprit that could initiate the inflam-
matory cascade typical of IBD. Many organisms have been pro-
posed: Mycobacterium avium subsp paratuberculosis and a
number of Proteobacteria including enterohepatic Helicobacter,
non-jejuni/coli Campylobacter and adherent and invasive
E. coli. The focus has recently shifted with the realisation that
the gut microbiota as a whole is altered in IBD. The concept
of an altered gut microbiota or dysbiosis is possibly the most sig-
nificant development in IBD research in the past decade.
A definitive change of the normal gut microbiota with a
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breakdown of host-microbial mutualism is probably the defining
event in IBD development.59

Changes in the gut microbiota have been repeatedly reported
in patients with IBD, with certain changes clearly linked to
either Crohn’s disease (CD) or UC: the most consistent change
is a reduction in Firmicutes.60 This has been balanced by
reports of increased levels of Bacteroidetes phylum members,61

although a reduction in Bacteroidetes has also been reported.62

There is a suggestion that there may be spatial reorganisation of
the Bacteroides species in patients with IBD, with Bacteroides
fragilis being responsible for a greater proportion of the bacter-
ial mass in patients with IBD compared with controls.63

Reduction in the Firmicutes species F. prausnitzii has been
well documented in patients with CD, particularly those with
ileal CD, although an increase in F. prausnitzii has been shown
in a paediatric cohort, suggesting a more dynamic role for the
species that merits further study.64 Other studies have also
demonstrated a decrease in Firmicutes diversity, with fewer con-
stituent species detected in patients with IBD compared with
controls.65 Changes in the two dominant phyla, Firmicutes and
Bacteroidetes, are coupled with an increase in abundance of
members of the Proteobacteria phylum, which have been
increasingly found to have a key role in IBD.66 Studies have
shown a shift towards an increase in species belonging to this
phylum, suggesting an aggressor role in the initiation of chronic
inflammation in patients with IBD.67 More specifically, increased
numbers of E. coli, including pathogenic variants, have been
documented in ileal CD.68 The IBD metagenome contains 25%
fewer genes than the healthy gut with metaproteomic studies
showing a correlative decrease in proteins and functional path-
ways.69 Specifically, ileal CD has been shown to be associated
with alterations in bacterial carbohydrate metabolism and
bacterial-host interactions, as well as human host-secreted
enzymes.69 A detailed investigation of functional dysbiosis
during IBD built on this by including inferred microbial gene
content from 231 subjects and an additional 11 metagenomes.70

This study identified enrichment in microbial pathways for oxi-
dative stress tolerance, immune evasion and host metabolite
uptake, with corresponding depletions in SCFA biosynthesis and
typical gut carbohydrate metabolism and amino acid biosyn-
thetic processes. Intriguingly, similar microbial metabolic shifts
have been observed in other inflammatory conditions such as
T2D,30 suggesting a common core gut microbial response to
chronic inflammation and immune activation. In addition,
recent work suggests a role for viruses in IBD, with a significant
expansion of Caudovirales bacteriophage in patients.71

Modulation of the microbiota as a therapy in IBD
Several clinical trials have examined the approach of modulating
the microbiota in patients with IBD, many of which predate the
‘omics’ era. Such trials provide a ‘proof of concept’ for the
importance of the role of the gut microbiota in IBD, but marry-
ing up individual approaches with the complex multifactorial
nature of IBD remains a challenge, particularly in addressing the
different phenotypes and genotypes of disease and the different
‘phases’ of the disease process: for example, prophylaxis, main-
tenance of remission, treatment of relapses.

Ulcerative colitis
In terms of probiotic research, one of the largest clinical trials in
IBD was the use of E. coli Nissle 1917 in the setting of remis-
sion maintenance in UC. Patients (n=327) were assigned to a
double-blind, double-dummy trial to receive either the probiotic
or mesalazine.72 Both treatments were deemed equivalent with

regards to relapse. E. coli Nissle is now considered an effective
alternative to 5-aminosalicylate for remission maintenance in
UC.73 There are two published clinical trials of the multistrain
probiotic VSL#3 in the setting of mild to moderate flares of
UC.74 Both demonstrate that high doses improve disease activity
scores but whether such improvements in scores are clinically
meaningful for patients, particularly compared with other treat-
ment options, remains to be clarified. An alternative approach is
transplantation of the whole gut microbiota from a healthy
donor: FMT. In IBD, a recent systematic review and
meta-analysis has shown that of nine cohort studies, eight case
studies and one randomised controlled trial, overall 45%
(54/119) achieved clinical remission. When only cohort studies
were analysed 36% achieved clinical remission.75 Since that
meta-analysis, two randomised controlled trials in UC show dis-
crepant results. One trial, in which two faecal transplants were
given via the upper GI route, showed no difference in clinical or
endoscopic remission between the faecal transplant group and
the control group (given autologous stool).76 A second trial, in
which patients with UC were randomised to weekly faecal
enemas from healthy donors or placebo enemas for 6 weeks,
demonstrated remission in a greater percentage of patients given
FMT compared with the control group (given water enema).77

There are unanswered questions regarding mode of delivery, fre-
quency of delivery and optimal donor/host characteristics.

Crohn’s disease
Antibiotics demonstrate efficacy in particular groups of patients
with CD but some antibiotics may be detrimental, showing a
complex interplay between host and microbiota. Patients who
have had a resection for CD have a decreased rate of endoscopic
and clinical recurrence when metronidazole or ornidazole are
used as prophylactic therapies.78 Several studies have assessed
the specific role of antimycobacterial therapies in CD treatment
but overall results are disappointing. There is no clinically rele-
vant evidence base for the use of probiotics in CD and in terms
of prebiotics, although an open label trial of fructo-oligosacchar-
ide in CD showed promise,79 and a subsequent randomised
placebo-controlled trial of fructo-oligosaccharide did not
support any clinical benefit.80

Pouchitis
Restorative proctocolectomy with ileal-pouch anal anastomosis
is the operation of choice for patients with UC requiring
surgery. Pouchitis has an incidence of up to 50% of patients
although it is a significant clinical problem for only about 10%.
Antibiotics are used as primary therapy; if single antibiotics
fail, dual antibiotics used for longer periods of time or antibio-
tics tailored to the microbiota in an individual patient can
be used. VSL#3 reduced the risk of disease onset and main-
tained an antibiotic-induced disease remission in pouchitis.81

A meta-analysis has shown that VSL#3 significantly reduced the
clinical relapse rates for maintaining remission in patients with
pouchitis.82

CRC AND THE GUT MICROBIOTA
Many microbiome studies have focused on colitis-associated
cancers83 or rodent preclinical models.84 Despite this, there is
increasing evidence that the colonic microbiota plays an import-
ant role in the cause of sporadic CRC.85 Reduced temporal sta-
bility and increased diversity has been shown for the faecal
microbiota of subjects with established CRC and polyposis,86

and now metagenomic and metatranscriptomic studies have
identified an individualised oncogenic microbiome and specific
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bacterial species that selectively colonise the on-tumour and off-
tumour sites.87

Several competing theories of the microbial regulation of
CRC have emerged (figure 1) to explain these observations. The
keystone-pathogen hypothesis88 and the α-bug hypothesis both
state that certain, low abundance microbiota members (such as
enterotoxigenic B. fragilis) possess unique virulence traits, which
are pro-oncogenic and remodel the microbiome and in turn
promote mucosal immune responses and colonic epithelial cell
changes.89 Tjalsma et al90 have also proposed the ‘driver-
passenger’ model for CRC: a first hit by indigenous intestinal
bacteria (‘bacterial drivers’), which drive the DNA damage that
contributes to CRC initiation. Second, tumorigenesis induces
intestinal niche alterations that favour the proliferation of
opportunistic bacteria (‘bacterial passengers’). For example,
CRCs have an increased enrichment of opportunistic pathogens
and polymicrobial Gram-negative anaerobic bacteria91 but it is
not yet clear whether these opportunistic pathogens merely
benefit from the CRC microenvironment or influence disease
progression. However, colonic polyps demonstrate higher bac-
terial diversity and richness when compared with control
patients, with higher abundance of mucosal Proteobacteria and
lower abundance of Bacteroidetes.92 This may in part be
explained by the mucosal defensive strategies designed to
manage the commensal microbiota. For example, α-defensin
expression is significantly increased in adenomas resulting in an
increased antibacterial activity compared with normal mucosa.93

At present, human studies have involved small patient
numbers, with evidence of sampling heterogeneity, limited
tumour phenotyping and oncological data. Despite this, a small
number of specific pathobionts have now been linked with aden-
omas and CRC including Streptococcus gallolyticus,94

Enterococcus faecalis95 and B. fragilis.84 E. coli is also overex-
pressed on CRC mucosa; it expresses genes that confer proper-
ties relevant to oncological transformation including M cell
translocation, angiogenesis and genotoxicity.96 Enrichment
of Fusobacterium nucleatum has also been identified in
adenoma versus adjacent normal tissue and is more abundant in
stools from CRC and adenoma cases than in healthy controls.
F. nucleatum’s fadA, a unique adhesin, allows it to adhere to
and invade human epithelial cells, eliciting an inflammatory
response97 and stimulating cell proliferation.98 Novel mechan-
isms from previously unassociated bacteria are also being
described to explain how bacterial proteins target proliferating
stem-progenitor cells. For example, AvrA, a pathogenic product
of Salmonella, has been shown to activate β-catenin signals and
enhance colonic tumorigenesis.99

Work has also focused on the metabolic function of the gut
microbiome and dietary microbiome interactions in the aeti-
ology of CRC. It is likely that the metabolism of fibre is critical
to this. Metagenomic analyses have consistently identified a
reduction of butyrate-producers in patients with CRC,100 a
finding replicated in animals.101 The microbiome also plays an
important role in the metabolism of sulfate, through

Figure 1 Proposed mechanisms of the gut microbiome in colon cancer aetiology.
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assimilatory sulfate-reduction to produce cysteine and methio-
nine, and dissimilatory sulfate-reduction to produce hydrogen
sulfide (H2S). H2S is likely to contribute to CRC development,
as colonic detoxification of H2S is also reduced in patients with
CRC; it also induces colonic mucosal hyperproliferation.102

There is also evidence that differences in host genotype, which
affect the carbohydrate landscape of the distal gut, interact with
diet to alter the composition and function of resident microbes
in a diet-dependent manner.103 Therefore it is possible that
patients genetically predisposed to CRC have a modified meta-
bolically active microbiome, which is determined by their genes
and by their family environment and dietary habits. There is
other evidence from global studies of cancer risk, that the
microbiome is important in cancer risk.

African Americans possess a colon dominated by Bacteroides,
while in Africans Prevotella are more abundant.104 African
Americans, who are at high risk of CRC, may have evolved a
CRC-microbiota moulded by dietary habits and environmental
exposures. Critically, mucosal Ki67 expression (a biomarker for
cancer risk) may decrease or increase within 2 weeks of either a
high fibre (>50 g/day) dietary intervention in African Americans
or a high fat, high protein low fibre Westernised diet in African
subjects. This short-term intervention leads to reciprocal
changes in luminal microbiome co-occurrence network struc-
tures that overwhelm interindividual differences in microbial
gene expression. Specifically, an animal-based diet increases the
abundance of bile-tolerant microorganisms (Alistipes, Bilophila
and Bacteroides) and decreases the levels of Firmicutes that
metabolise dietary plant polysaccharides (Roseburia,
Eubacterium rectale and Ruminococcus bromii).105 106

CONCLUSIONS
In the past decade, interest in the human microbiome has
increased considerably. A significant driver has been the realisa-
tion that the commensal microorganisms that comprise the
human microbiota are not simply passengers in the host, but

may actually drive certain host functions as well. In sterile
rodents, we see the dramatic impact that removing the micro-
biota has on nearly all aspects of the host’s ability to function
normally. This review highlights some key disease areas in
which the microbiota and its microbiome are thought to have
not just an association, but also a key modulatory role (table 1).
By better understanding the mechanisms and contribution the
microbiota make to these diseases, we hope to develop novel
therapeutics and strategies to modulate the microbiota to treat
or prevent disease. Additionally, in some instances it may be
possible to use the microbiome to detect gut-related diseases
before conventional diagnostics can. In the future we hope to
use this information to stratify patients more accurately and for
more efficient treatment. A body of evidence also points to the
gut microbiota being an environmental factor in drug metabol-
ism, for example, inactivation of the cardiac drug digoxin by
Eggerthella lenta in the gut. Thus, if we are to realise the vision
of a personalised healthcare revolution, we must explore how
the microbiome fits with this notion.
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